PMID21989078

PMID21989078 : The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c.
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of genetic variations in OCT1, OCT2, MATE1, MATE 2, and PMAT on the trough steady-state plasma concentration of metformin and hemoglobin A1c (Hb1Ac). METHOD The South Danish Diabetes Study was a 2 x 2 x 2 factorial, prospective, randomized, double-blind, placebo-controlled, multicentre study. One hundred and fifty-nine patients received 1 g of metformin, twice daily continuously, and 415 repeated plasma metformin measurements were obtained after 3, 6, and 9 months of treatment. RESULTS The mean trough steady-state metformin plasma concentration was estimated to be 576 ng/ml (range, 54–4133 ng/ml, p = 0.55) and correlated to the number of reduced function alleles in OCT1 (none, one or two: 642, 542, 397 ng/ml; P = 0.001). The absolute decrease in Hb1Ac both initially and long term was also correlated to the number of reduced function alleles in OCT1 resulting in diminished pharmacodynamic effect of metformin after 6 and 24 months. CONCLUSION In a large cohort of type 2 diabetics, we either confirm or show for the first time: (a) an enormous (80-fold) variability in trough steady-state metformin plasma concentration, (b) OCT1 activity affects metformin steady-state pharmacokinetics, and (c) OCT1 genotype has a bearing on HbA1c during metformin treatment.
Structured Findings
1 g of metformin, twice daily continuously significantly increased The mean trough steady-state metformin plasma concentration compared to placebo
Structured Markup
Intervention Comparator Outcome Label
1 g of metformin, twice daily continuously placebo The mean trough steady-state metformin plasma concentration significantly increased